Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci ; 40(2): 195-202, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34602006

ABSTRACT

The aim was to investigate the potential differences in muscle (vastus lateralis) and cerebral (prefrontal cortex) oxygenation levels as well as in the number of repetitions and total work output between isokinetic eccentric and concentric exercise at a moderate relative intensity until exhaustion. Ten recreationally active young men underwent two isokinetic exercise sessions either concentric or eccentric, one on each randomly selected leg. The protocols were performed at 60°/s and an intensity corresponding to 60% of the maximal voluntary contraction (MVC) of each contraction type. Concentric torque was significantly lower compared to eccentric torque in both peak values and at values corresponding to 60% of MVC [230 ± 18 Nm vs. 276 ± 19 Nm (P = .014) and 137 ± 12 Nm vs. 168 ± 11 Nm, respectively (P = .010)]. The participants performed 40% more contractions during eccentric compared to concentric exercise [122 ± 15 vs. 78 ± 7, respectively]. No differences were found in the levels of oxyhaemoglobin, deoxyhemoglobin, total haemoglobin and tissue saturation index when eccentric and eccentric exercise regimes were compared (all P > .05). Our results demonstrate that eccentric exercise of moderate intensity leads to greater resistance to fatigue and more work output compared to concentric exercise, despite the comparable muscle and cerebral oxygenation levels.


Subject(s)
Exercise , Muscle, Skeletal , Exercise Therapy , Humans , Male , Muscle Contraction , Quadriceps Muscle , Torque
2.
Eur J Sport Sci ; 21(5): 705-713, 2021 May.
Article in English | MEDLINE | ID: mdl-32449458

ABSTRACT

PURPOSE: The aim of the present study was to investigate the effect of priming exercise on Wingate performance and fatigue. METHODS: Twelve recreationally active young male volunteers participated in the study (age: 25 ± 5 years; weight: 75.0 ± 7.5 kg; height: 177 ± 6 cm; BMI: 24.0 ± 1.7). During a first visit, participants performed a typical V˙O2max test and a supramaximal assessment of V˙O2max on a cycle ergometer, while during the next three visits, the participants performed in a random order a Wingate test (i) with no priming exercise, (ii) after priming exercise followed by a 15-min recovery (Priming15) and (iii) after priming exercise followed by a 30-min recovery (Priming30). Priming exercise lasted 6 min, at work rate corresponding to the gas exchange threshold (GET) plus 70% of the difference between the GET and V˙O2max. RESULTS: The Priming 30 condition exhibited greater peak power output (595 ± 84 W) compared to the control (567 ± 85 W) and the Priming15 condition (569 ± 95 W) (P < .05). Regarding fatigue index, a tendency towards increased resistance to fatigue was observed in the Priming30 condition compared to the control and the Priming15 conditions (P = .072). Pre-Wingate lactate levels were found to be significantly different between the Priming15 (7.18 ± 3.09 mmol/L) and the Priming30 (4.87 ± 2.11 mmol/L) conditions (P < .05). CONCLUSIONS: Priming exercise of high intensity followed by a prolonged recovery leads to increased peak power in a subsequent Wingate test. Moreover, our data are consistent with the idea that a priming exercise-induced modest increase in blood lactate concentration at the onset of the following criterion bout is a key factor of performance.


Subject(s)
Exercise Test/methods , Exercise/physiology , Fatigue/physiopathology , Oxygen Consumption/physiology , Adult , Analysis of Variance , Carbon Dioxide/metabolism , Endurance Training/methods , Exercise Test/instrumentation , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Physical Exertion/physiology , Pulmonary Gas Exchange/physiology , Time Factors
3.
Int J Sports Med ; 42(5): 441-447, 2021 May.
Article in English | MEDLINE | ID: mdl-33124012

ABSTRACT

Glutathione is the most abundant cellular antioxidant and regulates redox homeostasis. Healthy individuals with certain antioxidant inadequacies/deficiencies exhibit impairments in physiological functions. The aim was to investigate whether low levels of dietary cysteine intake are associated with a) lower erythrocyte glutathione, b) increased plasma F2-isoprostanes, and c) impaired muscle function. Towards this aim, we recorded the dietary intake of the three amino acids that synthesize glutathione (i. e., glutamic acid, cysteine, and glycine) in forty-one healthy individuals, and subsequently measured erythrocyte glutathione levels. Maximal isometric strength and fatigue index were also assessed using an electronic handgrip dynamometer. Our findings indicate that dietary cysteine intake was positively correlated with glutathione levels (r=0.765, p<0.001). In addition, glutathione levels were negatively correlated with F2-isoprostanes (r=- 0.311, p=0.048). An interesting finding was that glutathione levels and cysteine intake were positively correlated with maximal handgrip strength (r=0.416, p=0.007 and r=0.343, p=0.028, respectively). In conclusion, glutathione concentration is associated with cysteine intake, while adequate cysteine levels were important for optimal redox status and muscle function. This highlights the importance of proper nutritional intake and biochemical screening with the goal of personalized nutrition.


Subject(s)
Cysteine/administration & dosage , Glutathione/blood , Hand Strength , Muscle, Skeletal/physiology , Adult , Eating , Erythrocytes/metabolism , F2-Isoprostanes/blood , Female , Humans , Isometric Contraction , Male , Muscle Fatigue , Oxidative Stress , Young Adult
5.
J Sci Med Sport ; 13(1): 70-3, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19560968

ABSTRACT

We assessed the validity and reliability of the new 15m square shuttle run test (SST) for predicting laboratory treadmill test (TT) maximal oxygen uptake (VO(2 max)) compared to the 20 m multistage shuttle run test (MST) in 45 adult males. Thirty participants performed a TT and a SST once to develop a VO( 2max) prediction model. The remaining 15 participants performed the TT and MST once and the SST twice for cross-validation purposes. Throughout testing V O(2max) was determined via portable indirect calorimetry while blood lactate concentration was assessed at the fifth recovery minute. Comparisons of TT V O(2 max) (51.3+/-3.1 ml kg(-1)min(-1)) with SST measured (51.2+/-3.2 ml kg(-1)min(-1)) and predicted (50.9+/-3.3 ml kg(-1)min(-1)) V O(2 max) showed no differences while TT blood lactate was higher compared to SST (10.3+/-1.7 mmol vs. 9.7+/-1.7 mmol, respectively). In contrast, MST measured (53.4+/-3.5 ml kg(-1)min(-1)) and predicted (57.0+/-4.5 ml kg(-1)min(-1)) V O(2 max) and blood lactate (11.2+/-2.0 mmol) were significantly higher compared to TT. No test-retest differences were detected for SST measured and predicted V O(2 max) and blood lactate. It is concluded that the SST is a highly valid and reliable predictive test for V O(2 max).


Subject(s)
Exercise Test/methods , Exercise Test/standards , Oxygen Consumption/physiology , Vital Capacity/physiology , Adolescent , Calorimetry, Indirect , Humans , Lactic Acid/blood , Linear Models , Male , Maximal Expiratory Flow Rate , Physical Exertion/physiology , Physical Fitness/physiology , Young Adult
6.
J Sports Sci ; 23(10): 1065-73, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16194983

ABSTRACT

The aims of the present study were to determine whether available "fasting" and oral glucose tolerance test-derived insulin sensitivity indices could effectively discriminate between individuals with higher than normal insulin sensitivity, and whether they would all provide similar information in clinical practice. Sprint runners (n = 8), endurance runners (n = 8) and sedentary controls (n = 7) received a 75-g oral glucose tolerance test. All participants were healthy lean males, aged 21-29 years. Besides glucose and insulin responses, a total of nine such indices were computed. Fasting as well as post-load glucose concentrations were similar in the three groups, while basal plasma insulin and the insulinaemic response to glucose were both higher in untrained individuals (at P < 0.05 and P < 0.02, respectively). There were no differences between endurance and sprint runners. The results for insulin sensitivity, however, were quite variable: three indices showed that both groups of athletes were more insulin-sensitive than controls; three indicated that this was the case for endurance runners only; one indicated that this was the case for sprint runners only; and two showed that sprint runners were more insulin-sensitive than either sedentary individuals or endurance runners (all differences were significant at P < 0.05). Controlling for total body weight or lean mass did not effectively resolve this disagreement. Apparently, the various insulin sensitivity indices examined provided different quantitative and qualitative information, despite insulin action being greater in both groups of athletes relative to controls, as reflected by their similar glucose tolerance with lower insulin concentrations. We suggest, therefore, that the use and interpretation of such indices among physically active individuals be made with caution.


Subject(s)
Glucose Tolerance Test/methods , Running/physiology , Adult , Analysis of Variance , Humans , Male , Physical Fitness/physiology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...